Respuesta :
Answer with Step-by-step explanation:
We are given that a matrix
[tex]A=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right][/tex]
a.We have to find characteristic polynomial in terms of A
We know that characteristic equation of given matrix[tex]\mid{A-\lambda I}\mid=0[/tex]
Where I is identity matrix of the order of given matrix
I=[tex]\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right][/tex]
Substitute the values then, we get
[tex]\begin{vmatrix}1-\lambda&0&1\\1&-\lambda&0\\0&0&-\lambda\end{vmatrix}=0[/tex]
[tex](1-\lambda)(\lamda^2)-0+0=0[/tex]
[tex]\lambda^2-\lambda^3=0[/tex]
[tex]\lambda^3-\lambda^2=0[/tex]
Hence, characteristic polynomial =[tex]\lambda^3-\lambda^2=0[/tex]
b.We have to find the eigen value for given matrix
[tex]\lambda^2(1-\lambda)=0[/tex]
Then , we get [tex]\lambda=0,0,1-\lambda=0[/tex]
[tex]\lambda=1[/tex]
Hence, real eigen values of for the matrix are 0,0 and 1.
c.Eigen space corresponding to eigen value 1 is the null space of matrix [tex]A-I[/tex]
[tex]E_1=N(A-I)[/tex]
[tex]A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&-1\end{array}\right][/tex]
Apply [tex]R_1\rightarrow R_1+R_3[/tex]
[tex]A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right][/tex]
Now,(A-I)x=0[/tex]
Substitute the values then we get
[tex]\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0[/tex]
Then , we get [tex]x_3=0[/tex]
And[tex]x_1-x_2=0[/tex]
[tex]x_1=x_2[/tex]
Null space N(A-I) consist of vectors
x=[tex]\left[\begin{array}{ccc}x_1\\x_1\\0\end{array}\right][/tex]
For any scalar [tex]x_1[/tex]
[tex]x=x_1\left[\begin{array}{ccc}1\\1\\0\end{array}\right][/tex]
[tex]E_1=N(A-I)=Span(\left[\begin{array}{ccc}1\\1\\0\end{array}\right][/tex]
Hence, the basis of eigen vector corresponding to eigen value 1 is given by
[tex]\left[\begin{array}{ccc}1\\1\\0\end{array}\right][/tex]
Eigen space corresponding to 0 eigen value
[tex]N(A-0I)=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right][/tex]
[tex](A-0I)x=0[/tex]
[tex]\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0[/tex]
[tex]\left[\begin{array}{ccc}x_1+x_3\\x_1\\0\end{array}\right]=0[/tex]
Then, [tex]x_1+x_3=0[/tex]
[tex]x_1=0[/tex]
Substitute [tex]x_1=0[/tex]
Then, we get [tex]x_3=0[/tex]
Therefore, the null space consist of vectors
[tex]x=x_2=x_2\left[\begin{array}{ccc}0\\1\\0\end{array}\right][/tex]
Therefore, the basis of eigen space corresponding to eigen value 0 is given by
[tex]\left[\begin{array}{ccc}0\\1\\0\end{array}\right][/tex]