Consider the matrix A. A = 1 0 1 1 0 0 0 0 0 Find the characteristic polynomial for the matrix A. (Write your answer in terms of λ.) (1−λ)λ2 Find the real eigenvalues for the matrix A. (Enter your answers as a comma-separated list.) λ = 1, 0 Find a basis for each eigenspace for the matrix A. (small

Respuesta :

Answer with Step-by-step explanation:

We are given that a matrix

[tex]A=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right][/tex]

a.We have to find characteristic polynomial in terms of A

We know that characteristic equation of given matrix[tex]\mid{A-\lambda I}\mid=0[/tex]

Where I is identity matrix of the order of given matrix

I=[tex]\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right][/tex]

Substitute the values then, we get

[tex]\begin{vmatrix}1-\lambda&0&1\\1&-\lambda&0\\0&0&-\lambda\end{vmatrix}=0[/tex]

[tex](1-\lambda)(\lamda^2)-0+0=0[/tex]

[tex]\lambda^2-\lambda^3=0[/tex]

[tex]\lambda^3-\lambda^2=0[/tex]

Hence, characteristic polynomial =[tex]\lambda^3-\lambda^2=0[/tex]

b.We have to find the eigen value  for given matrix

[tex]\lambda^2(1-\lambda)=0[/tex]

Then , we get [tex]\lambda=0,0,1-\lambda=0[/tex]

[tex]\lambda=1[/tex]

Hence, real eigen values of for the matrix are 0,0 and 1.

c.Eigen space corresponding to eigen value 1 is the null space of matrix [tex]A-I[/tex]

[tex]E_1=N(A-I)[/tex]

[tex]A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&-1\end{array}\right][/tex]

Apply [tex]R_1\rightarrow R_1+R_3[/tex]

[tex]A-I=\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right][/tex]

Now,(A-I)x=0[/tex]

Substitute the values then we get

[tex]\left[\begin{array}{ccc}0&0&1\\1&-1&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0[/tex]

Then , we get [tex]x_3=0[/tex]

And[tex]x_1-x_2=0[/tex]

[tex]x_1=x_2[/tex]

Null space N(A-I) consist of vectors

x=[tex]\left[\begin{array}{ccc}x_1\\x_1\\0\end{array}\right][/tex]

For any scalar [tex]x_1[/tex]

[tex]x=x_1\left[\begin{array}{ccc}1\\1\\0\end{array}\right][/tex]

[tex]E_1=N(A-I)=Span(\left[\begin{array}{ccc}1\\1\\0\end{array}\right][/tex]

Hence, the basis of eigen vector corresponding to eigen value 1 is given by

[tex]\left[\begin{array}{ccc}1\\1\\0\end{array}\right][/tex]

Eigen space corresponding to 0 eigen value

[tex]N(A-0I)=\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right][/tex]

[tex](A-0I)x=0[/tex]

[tex]\left[\begin{array}{ccc}1&0&1\\1&0&0\\0&0&0\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=0[/tex]

[tex]\left[\begin{array}{ccc}x_1+x_3\\x_1\\0\end{array}\right]=0[/tex]

Then, [tex]x_1+x_3=0[/tex]

[tex]x_1=0[/tex]

Substitute [tex]x_1=0[/tex]

Then, we get [tex]x_3=0[/tex]

Therefore, the null space consist of vectors

[tex]x=x_2=x_2\left[\begin{array}{ccc}0\\1\\0\end{array}\right][/tex]

Therefore, the basis of eigen space corresponding to eigen value 0 is given by

[tex]\left[\begin{array}{ccc}0\\1\\0\end{array}\right][/tex]

ACCESS MORE