The average (arithmetic mean) of y numbers is x. If 30 is added to the set of numbers, then the average will be x − 5. What is the value of y in terms of x ?

Respuesta :

Answer:

y = [tex]\frac{1}{5}(x^{2}-35x)[/tex]

Step-by-step explanation:

Let the total numbers are n.

If the average of y numbers is x then we can form an equation

[tex]\frac{y}{n}=x[/tex]

⇒ [tex]\frac{n}{y}=\frac{1}{x}[/tex]

⇒ n = [tex]\frac{y}{x}[/tex] --------(1)

Now 30 is added to the set of numbers then average becomes (x - 5)

[tex]\frac{y+30}{n+1}=(x-5)[/tex]

⇒ [tex]\frac{(n+1)}{(y+30)}=\frac{1}{(x-5)}[/tex]

⇒ (n + 1) = [tex]\frac{y+30}{x-5}[/tex]

⇒ n = [tex]\frac{y+30}{x-5}[/tex] - 1 ----- (2)

Now we equate the values of n from equation 1 and 2

[tex]\frac{y}{x}[/tex] = [tex]\frac{y+30}{x-5}[/tex] - 1

y(x - 5) = x(y + 30) - x(x - 5)  [ By cross multiplication ]

xy - 5y = xy + 30x - x² + 5x

xy - xy - 5y = 35x - x²

-5y = 35x - x²

x² - 35x = 5y

y = [tex]\frac{1}{5}(x^{2}-35x)[/tex]

Answer: y = x/5 - 7

Step-by-step explanation:

Please see the workings attached .

Ver imagen sakhilemdletshesm
ACCESS MORE