In a certain ellipse, the endpoints of the major axis are $(-11,4)$ and $(9,4).$ Also, the ellipse passes through the point $(7,7).$ Find the area of the ellipse.

Respuesta :

Answer:

End point of Major Axis =(-11,4) and (9,4), as ends points should have same but opposite in sign x coordinate.So, either it should be (-11,4) and (11,4) or (-9,4) and (9,4).

Length of Major axis ,as y coordinates are same.

      = |9-(-9)| or |11-(-11)|

       =18 or 22

Let equation of ellipse be

  [tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\\\\2a=18\\\\a=9\\\\\text{Ellipse passes through} (7,7)\\\\\frac{7^2}{9^2}+\frac{7^2}{b^2}=1\\\\\frac{49}{b^2}=1-\frac{49}{81}\\\\\frac{49}{b^2}=\frac{32}{81}\\\\b^2=\frac{49*81}{32}\\\\b=\pm \frac{63}{\sqrt{32}}\\\\2a=22\\\\a=11\\\\\text{Ellipse passes through} (7,7)\\\\\frac{7^2}{11^2}+\frac{7^2}{b^2}=1\\\\\frac{49}{b^2}=1-\frac{49}{121}\\\\\frac{49}{b^2}=\frac{72}{81}\\\\b^2=\frac{49*81}{72}\\\\b=\pm \frac{63}{\sqrt{72}}[/tex]

Equation of ellipse will be

 [tex]\rightarrow \frac{x^2}{9^2}+\frac{y^2}{(\pm \frac{63}{\sqrt{32}})^2}=1\\\\\rightarrow \frac{x^2}{81}+\frac{32y^2}{3969}=1[/tex]  

Area of the ellipse in first Quadrant , if coordinates of end points of major axis are (-9,4) and (9,4).

     [tex]=\int\limits^9_0 {y} \, dx\\\\=\int\limits^9_0 {\sqrt{\frac{3969}{32}\times (1-\frac{x^2}{81})} \, dx\\\\=\sqrt{\frac{3969}{32*81}} \times\int\limits^9_0 {\sqrt{(9^2-x^2}\\\\=\sqrt{\frac{3969}{2592}} \times (\frac{x*\sqrt{9^2-x^2}}{2}+\frac{81}{2}\sin^{-1}{\frac{x}{9})\left \{ {{x=9} \atop {x=0}} \right[/tex]

  [tex]=\sqrt{\frac{3969}{2592}} \times \frac{81}{2} \times \frac{\pi}{2}\\\\=\sqrt{\frac{3969}{2592}} \times \frac{81\pi}{4}[/tex]    

So, Area of Ellipse

     =4 × Area of ellipse in first Quadrant

      [tex]=\sqrt{\frac{3969}{2592}}\times 81\pi[/tex]

If, coordinates of end points of major axis is (-11,4) and (11,4), evaluate by same procedure.

Ver imagen Аноним
ACCESS MORE