Answer:
The distance from the central maximum is 0.854 m.
Explanation:
Given that,
Wave length = 4.60 cm
Width d= 34.5 cm
Distance L= 6.35 m
We need to calculate the angle
Using relation width and wavelength
[tex]d\sin\theta=n\lambda[/tex]
[tex]\sin\theta=\dfrac{n\lambda}{d}[/tex]
[tex]\theta=\sin^{-1}\dfrac{n\lambda}{d}[/tex]
[tex]\theta=sin^{-1}\dfrac{4.60}{34.5}[/tex]
[tex]\theta=7.66^{\circ}[/tex]
We need to calculate the distance from the central maximum
[tex]y=L\tan\theta[/tex]
[tex]y=6.35\times\tan7.66[/tex]
[tex]y=0.854\ m[/tex]
Hence, The distance from the central maximum is 0.854 m.