Answer: This fuel will require 239230 years.
Explanation:
All the radioactive reactions follow first order kinetics.
The equation used to calculate rate constant from given half life for first order kinetics:
[tex]t_{1/2}=\frac{0.693}{k}[/tex]
We are given:
[tex]t_{1/2}=24000yrs[/tex]
Putting values in above equation, we get:
[tex]k=\frac{0.693}{24000}=2.8875\times 10^{-5}yr^{-1}[/tex]
The equation used to calculate time period follows:
[tex]N=N_o\times e^{-k\times t}[/tex]
where,
[tex]N_o[/tex] = initial mass of isotope = 10 kg = 10000 g (Conversion factor: 1 kg = 1000 g)
N = mass of the parent isotope left after the time = 10 g
t = time = ? years
k = rate constant = [tex]2.8875\times 10^{-5}yr^{-1}[/tex]
Putting values in above equation, we get:
[tex]N=N_o\times e^{-(2.8875\times 10^{-5}yr^{-1})\times t}\\\\t=239230\text{ years}[/tex]
Hence, this fuel will require 239230 years.