Respuesta :

Answer:

[tex]f(x)=5(x-2)^{2}+6[/tex]

Step-by-step explanation:

we have

[tex]f(x)=5x^{2} -20x+26[/tex]

This is the equation of a vertical parabola open upward

The vertex is a minimum

The equation of a vertical parabola in vertex form is equal to

[tex]f(x)=a(x-h)^2+k[/tex]

where

(h,k) is the vertex

Convert the given function to vertex form

Factor the leading coefficient

[tex]f(x)=5(x^{2} -4x)+26[/tex]

Complete the square

[tex]f(x)=5(x^{2} -4x+4)+26-20[/tex]

[tex]f(x)=5(x^{2} -4x+4)+6[/tex]

Rewrite as perfect squares

[tex]f(x)=5(x-2)^{2}+6[/tex] ------> equation in vertex form

The vertex is the point (2,6)

ACCESS MORE