Answe[tex]-1 \quad \dfrac{e^{\pi}+e^{-\pi}}{2}[/tex]
Step-by-step explanation:
Recall that
[tex]\sinh(x)=\dfrac{e^x -e ^{-x}}{2}[/tex]
and that
[tex]\cosh(x)=\dfrac{e^x+e^{-x}}{2}[/tex]
Also note that,
[tex](\sinh(x))'=\cosh(x)[/tex]
and that
[tex](\cosh(x))'=\sinh(x)[/tex]
Now, to find the relative extrema of the function, we first have to compute the derivative of f(x) and find the values of x where the derivative is equal to zero, using the last equations, the linear property of the derivative and the product rule, we get that
[tex]f^{'}(x)=\cos(x)\sinh(x)+\sin(x)\cosh(x)+\sin(x)\cosh(x)-\cos(x)\sinh(x)\\\\=\sin(x)\cosh(x)+\sin(x)\cosh(x)=2\sin(x)\cosh(x)[/tex]
Since [tex]\cosh(x) > 0[/tex] for all x, to find the relative extrema of the function in the interval -4≤x≤4, we only have to find the values x, in the given interval, where [tex]\sin(x)=0[/tex]. After a inspection of [tex]\sin(x)[/tex] on the given interval, we can see that the extrema of f(x) can be find at [tex]x=-\pi,0,\pi[/tex].
It holds that
[tex]f(0)=-\cos(0)\cosh(0)=(-1) \cdot 1=-1[/tex]
and that
[tex]f(-\pi) =f(\pi)=-\cos(\pi)\sinh(\pi)=-(-1)\dfrac{e^{\pi}+e^{-\pi}}{2}=\dfrac{e^{\pi}+e^{-\pi}}{2}[/tex]