Respuesta :
Answer:
25.33 rpm
Explanation:
M = 100 kg
m1 = 22 kg
m2 = 28 kg
m3 = 33 kg
r = 1.60 m
f = 20 rpm
Let the new angular speed in rpm is f'.
According to the law of conservation of angular momentum, when no external torque is applied, then the angular momentum of the system remains constant.
Initial angular momentum = final angular momentum
(1/2 x M x r^2 + m1 x r^2 + m2 x r^2 + m3 x r^2) x ω =
(1/2 x M x r^2 + m1 x r^2 + m3 x r^2 ) x ω'
(1/2 M + m1 + m2 + m3) x 2 x π x f = (1/2 M + m1 + m3) x 2 x π x f'
( 1/2 x 100 + 22 + 28 + 33) x 20 = (1/2 x 100 + 22 + 33) x f'
2660 = 105 x f'
f' = 25.33 rpm
The new angular velocity of the merry-go-round is 25.34 rpm.
The given parameters;
- mass of the merry go round, M = 100 kg
- mass of the children, m₁, m₂, m₃ = 22 kg, 28 kg, 33 kg
- initial angular velocity, ω₁ = 20 rpm
- radius of the merry - go - round, r = 1.6 m
Apply the principle of conservation of angular momentum;
[tex]I_1\omega _1 = I_2 \omega _2\\\\(\frac{1}{2} Mr^2 + m_1r^2 + m_2r^2 + m_3r^2 )\omega_1 = (\frac{1}{2} Mr^2 + m_1r^2 + m_3r^2 )\omega_2\\\\\(\frac{1}{2} M + m_1 + m_2 + m_3) r^2 \omega_1 = (\frac{1}{2} M + m_1 + m_3 ) r^2 \omega_2\\\\(\frac{1}{2} M + m_1 + m_2 + m_3) \omega_1 = (\frac{1}{2} M + m_1 + m_3 ) \omega_2\\\\(0.5M + m_1 + m_2 + m_3)\omega _1 = (0.5M + m_1 + m_3) \omega _2\\\\\omega_2 = \frac{(0.5M + m_1 + m_2 + m_3)\omega _1}{0.5M + m_1 + m_3 } \\\\[/tex]
[tex]\omega_2 = \frac{(0.5\times 100\ +\ 22 \ +\ 28 \ +\ 33) 20}{0.5\times 100 \ + \ 22 \ + \ 33 }\\\\\omega_2 = 25.34 \ rpm[/tex]
Thus, the new angular velocity of the merry-go-round is 25.34 rpm.
Learn more here:https://brainly.com/question/4126751