Respuesta :

The two curves intersect when

[tex]-x^2=6-5x\implies x^2-5x+6=(x-3)(x-2)=0\implies x=2,x=3[/tex]

The region bounded by [tex]x=0[/tex] and the two curves "ends" with a vertex where [tex]x=2[/tex]. So over the interval [0, 2], we have [tex]6-5x\ge-x^2[/tex], so that the volume is

[tex]\displaystyle2\pi\int_0^2x(6-5x+x^2)\,\mathrm dx=\boxed{\frac{16\pi}3}[/tex]

That is, each cylindrical shell has a radius of [tex]x[/tex] and height [tex](6-5x)-(-x^2)=6-5x+x^2[/tex], and their contribution to the total volume is [tex]2\pi[/tex] times the radius and height.

ACCESS MORE