contestada

value of sec Square 26 degrees - cot square 64 degrees is

Please answer in a little bit detail ​

Respuesta :

Answer:

The result is 1

Step-by-step explanation:

we have

[tex]sec^{2}(26\°)-cot^2(64\°)[/tex]

Remember that

[tex]cot^2(64\°)=\frac{cos^2(64\°)}{sin^2(64\°)}[/tex]

[tex]sec^{2}(26\°)=\frac{1}{cos^2(26\°)}[/tex]

If two angles are complementary ----> A+B=90°

then

cos (A)=sin(B)

In this problem 26° and 64° are complementary angles

therefore

[tex]\frac{1}{cos^2(26\°)}=\frac{1}{sin^2(64\°)}[/tex]

substitute

[tex]\frac{1}{sin^2(64\°)}-\frac{cos^2(64\°)}{sin^2(64\°)}[/tex]

[tex]\frac{1-cos^2(64\°)}{sin^2(64\°)}[/tex]

we have that

[tex]1-cos^2(64\°)=sin^2(64\°)[/tex]

substitute

[tex]\frac{sin^2(64\°)}{sin^2(64\°)}=1[/tex]

ACCESS MORE