Answer:
Center (0,0)
Vertices (-15,0), (15,0), (0,-25), (0,25)
Foce (0,-20), (0,20)
Step-by-step explanation:
You are given the ellipse equation
[tex]\dfrac{x^2}{225}+\dfrac{y^2}{625}=1[/tex]
The canonical equation of ellipse with center at (0,0) is
[tex]\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1[/tex]
So,
[tex]a^2=225\Rightarrow a=15\\ \\b^2=625\Rightarrow b=25[/tex]
Hence, the center of your ellipse is at (0,0) and the vertices are at points (-15,0), (15,0), (0,-25) and (0,25)
This ellipse is strengthen in y-axis, so
[tex]c=\sqrt{b^2-a^2}=\sqrt{625-225}=\sqrt{400}=20[/tex]
and the foci are at points (0,-20) and (0,20).