Can someone please explain how to solve number sixteen using those two equations?

Hello!
First, we know K = ΔUg. (From now on, I'm going to use a lowercase g as your subscript g). We therefore can say that 1/2mv^2 = mgh, as K = 1/2mv^2, ΔUg = mgh, and K and ΔUg are equal.
From this equation, substitute in values and divide both sides by m.
1/2mv^2 = mgh
1/2mv^2 = m(9.8)(10)
(1/2mv^2) / m = (m(9.8)(10)) / m
1/2v^2 = (9.8)(10)
Now, we have an easily solvable equation.
1/2v^2 = (9.8)(10)
1/2v^2 = 98
v^2 = 196
v = 14
Therefore, your answer is v = 14.
Hope this helps!
Answer:
[tex]v=14m^{2}/s[/tex]
Explanation:
First, let's write out what we already know
Combine like terms and then solve accordingly.
1/2 mv²= (10m²)(9.8m/s²)
1/2 mv²= 98m³/s²
v²= 2m(98m³/s²)
v² = 196m⁴/s²
[tex]\sqrt{v^{2} }[/tex] = [tex]\sqrt{\frac{196m^{4} }{s^{2} }[/tex]
v = 14m²/s