Find the center and radius of the circle with equation (x + 3)^2 + (y – 6)^2 = 100.

Answer:
center (-3,6)
radius(r) 10
Step-by-step explanation:
The center-radius form (it is really called standard form) of a circle is:
[tex](x-h)^2+(y-k)^2=r^2[/tex]
where [tex](h,k)[/tex] is the center and [tex]r[/tex] is the radius.
Compare the following:
[tex](x-h)^2+(y-k)^2=r^2[/tex]
[tex](x+3)^2+(y-6)^2=100[/tex]
You should see the following:
[tex]-h=3[/tex]
[tex]-k=-6[/tex]
[tex]r^2=100[/tex].
[tex]-h=3 \text{ implies }h=-3[/tex].
[tex]-k=-6 \text{ implies } k=6[/tex].
[tex]r^2=100 \text{ implies } r=\sqrt{100}=10[/tex].
So the center is (-3,6) and the radius is 10.