please help i dont get this at all

Answer:
[tex]\frac{20y^{2} a^{2} }{41bx^{3} }[/tex]
Step-by-step explanation:
1) Flip the second fraction and change the operation to multiplication:
[tex]\frac{5x^{2}y^{3} }{2a^{5}b^{4} } * \frac{8a^{7}b^{3} }{41x^{5}y }[/tex]
2) Cross cancel factors:
[tex]\frac{5y^{2} }{2b } * \frac{8a^{2} }{41x^{3} }[/tex]
3) Multiply:
[tex]\frac{40y^{2} a^{2} }{82bx^{3} }[/tex]
4) Simplify:
[tex]\frac{20y^{2} a^{2} }{41bx^{3} }[/tex]
Answer:
The correct option is D) [tex]\frac{20y^2a^2}{41x^{3}b}[/tex].
Step-by-step explanation:
Consider the provided expression.
[tex]\frac{5x^2y^3}{2a^5b^4}\div \frac{41x^5y}{8a^7b^3}[/tex]
Apply the fraction rule: [tex]\frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}[/tex]
Change the expression by using the above rule:
[tex]\frac{5x^2y^3}{2a^5b^4}\times \frac{8a^7b^3}{41x^5y}[/tex]
[tex]\frac{5x^2y^3\times \:8a^7b^3}{2a^5b^4\times \:41x^5y}[/tex]
[tex]\frac{40a^7y^3b^3x^2}{82a^5x^5b^4y}[/tex]
[tex]\frac{20a^7y^3b^3x^2}{41a^5x^5b^4y}[/tex]
Apply the exponent rule: [tex]\frac{x^a}{x^b}=\frac{1}{x^{b-a}}[/tex]
[tex]\frac{20a^{7-5}y^{3-1}b^{3-4}x^{2-5}}{41}[/tex]
[tex]\frac{20a^2y^2b^{-1}x^{-3}}{41}[/tex]
Again apply the exponent rule:
[tex]\frac{20y^2a^2}{41x^{3}b}[/tex]
Hence, the correct option is D) [tex]\frac{20y^2a^2}{41x^{3}b}[/tex].