Respuesta :

Answer:

[tex]\frac{20y^{2} a^{2} }{41bx^{3} }[/tex]

Step-by-step explanation:

1) Flip the second fraction and change the operation to multiplication:

[tex]\frac{5x^{2}y^{3}  }{2a^{5}b^{4}  } *  \frac{8a^{7}b^{3}  }{41x^{5}y  }[/tex]

2) Cross cancel factors:

[tex]\frac{5y^{2}   }{2b  } *  \frac{8a^{2}  }{41x^{3}  }[/tex]

3) Multiply:

[tex]\frac{40y^{2} a^{2} }{82bx^{3} }[/tex]

4) Simplify:

[tex]\frac{20y^{2} a^{2} }{41bx^{3} }[/tex]

Answer:

The correct option is D) [tex]\frac{20y^2a^2}{41x^{3}b}[/tex].

Step-by-step explanation:

Consider the provided expression.

[tex]\frac{5x^2y^3}{2a^5b^4}\div \frac{41x^5y}{8a^7b^3}[/tex]

Apply the fraction rule: [tex]\frac{a}{b}\div \frac{c}{d}=\frac{a}{b}\times \frac{d}{c}[/tex]

Change the expression by using the above rule:

[tex]\frac{5x^2y^3}{2a^5b^4}\times \frac{8a^7b^3}{41x^5y}[/tex]

[tex]\frac{5x^2y^3\times \:8a^7b^3}{2a^5b^4\times \:41x^5y}[/tex]

[tex]\frac{40a^7y^3b^3x^2}{82a^5x^5b^4y}[/tex]

[tex]\frac{20a^7y^3b^3x^2}{41a^5x^5b^4y}[/tex]

Apply the exponent rule: [tex]\frac{x^a}{x^b}=\frac{1}{x^{b-a}}[/tex]

[tex]\frac{20a^{7-5}y^{3-1}b^{3-4}x^{2-5}}{41}[/tex]

[tex]\frac{20a^2y^2b^{-1}x^{-3}}{41}[/tex]

Again apply the exponent rule:

[tex]\frac{20y^2a^2}{41x^{3}b}[/tex]

Hence, the correct option is D)  [tex]\frac{20y^2a^2}{41x^{3}b}[/tex].

ACCESS MORE
EDU ACCESS