Respuesta :

gmany

Answer:

0

Step-by-step explanation:

METHOD 1.

We know:

[tex]f\bigg(f^{-1}(x)\bigg)=x[/tex]

Therefore

[tex]f\bigg(f^{-1}(0)\bigg)=0[/tex]

METHOD 2.

[tex]\text{Find}\ f^{-1}(x)[/tex]

[tex]f(x)=3x+12\to y=3x+12[/tex]

exchange x to y and vice versa:

[tex]x=3y+12[/tex]

solve for y:

[tex]3y+12=x[/tex]            subtract 12 from both sides

[tex]3y=x-12[/tex]        divide both sides by 3

[tex]y=\dfrac{x-12}{3}\to f^{-1}(x)=\dfrac{x-12}{3}[/tex]

[tex]f\bigg(f^{-1}(x)\bigg)\to[/tex]    replace x in f(x) with the expression[tex]\dfrac{x-12}{3}[/tex]

[tex]f\bigg(f^{-1}(x)\bigg)=3\cdot\dfrac{x-12}{3}+12=x-12+12=x[/tex]

[tex]f\bigg(f^{-1}(0)\bigg)\to[/tex] put x = 0 to [tex]f\bigg(f^{-1}(x)\bigg)=x[/tex]

[tex]f\bigg(f^{-1}(0)\bigg)=0[/tex]

METHOD 3.

[tex]\text{Find}\ f^{-1}(x)[/tex]

[tex]f^{-1}(x)=\dfrac{x-12}{3}[/tex]

Calculate the value of f ⁻¹(x) for x = 0:

[tex]f^{-1}(0)=\dfrac{0-12}{3}=\dfrac{-12}{3}=-4[/tex]

Calculate the value of f(x) for x = -4:

[tex]f(4)=3(-4)+12=-12+12=0[/tex]

Otras preguntas

ACCESS MORE