Answer:
[tex]2.30 \times 10^{-31} \text{ m}[/tex]
Explanation:
The relation between the speed and the de Broglie wavelength λ of a particle is
[tex]\lambda = \dfrac{h}{mv }[/tex]
Data:
h = 6.626 × 10⁻³⁴ J·s
m = 96.0 mg
v = 30.0 m/s
Calculations:
(a) Convert milligrams to kilograms
[tex]m = \text{96.0 mg} \times \dfrac{\text{1 g}}{\text{1000 mg}} \times \dfrac{\text{1 kg} }{\text{1000 g}} = 9.60 \times 10^{-5}\text{ kg}[/tex]
(b) Calculate the wavelength
[tex]\lambda = \dfrac{6.626 \times 10^{-34 }}{9.60 \times 10^{-5}\times 30.0} = \mathbf{2.30 \times 10^{-31}} \textbf{ m}[/tex]