Respuesta :
Answer:
46
Step-by-step explanation:
Let [tex](ab)[/tex] represent a number with [tex]a[/tex] in the ten's position and [tex]b[/tex] is the one's position.
This means [tex](ab)[/tex] actually has value of [tex]10a+b[/tex].
We are given the sum of those digits of [tex](ab)[/tex] is 10; this means [tex]a+b=10[/tex].
It says if 18 is added to the number [tex](ab)[/tex], then the result is [tex](ba)[/tex].
So [tex](ab)[/tex] has value [tex]10a+b[/tex] and
[tex](ba)[/tex] has value [tex]10b+a[/tex].
We are given then:
[tex](ab)+18=(ba)[/tex]
[tex]10a+b+18=10b+a[/tex]
Subtract [tex]10a[/tex] on both sides:
[tex]b+18=10b+a-10a[/tex]
Simplify:
[tex]b+18=10b-9a[/tex]
Subtract [tex]b[/tex] on both sides:
[tex]18=10b-b-9a[/tex]
[tex]18=9b-9a[/tex]
Divide both sides by 9:
[tex]2=b-a[/tex]
Rearrange by commutative property:
[tex]2=-a+b[/tex]
So the system of equations we want to solve is:
[tex]a+b=10[/tex]
[tex]-a+b=2[/tex]
-------------------------Add equations together (this will eliminate the variable [tex]a[/tex] and allow you to go ahead and solve for [tex]b[/tex]:
[tex]0+2b=12[/tex]
[tex]2b=12[/tex]
Divide both sides by 2:
[tex]b=\frac{12}{2}[/tex]
Simplify:
[tex]b=6[/tex]
If [tex]b=6[/tex] and [tex]a+b=10[/tex], then [tex]a=4[/tex]. Â [tex]a=4[/tex] since 4+6=10.
So the original number is (46).
18 more than 46 is 18+46=(64) which is what we wanted.
We also have the sum of 4 and 6 is 10 as well.