onsider the solid obtained by rotating the region bounded by the given curves about the y-axis. y = x^2/16 text(, ) x = 2 text(, ) y = 0 Find the volume V of this solid.

Respuesta :

Answer:

The volume of solid will be [tex]\dfrac{\pi}{2}[/tex] cubic unit

Step-by-step explanation:

Given: The given curves [tex]y=\dfrac{x^2}{16}[/tex]

Rotation about y-axis to form a solid bounded by given curve, x=2 and y=0.

Please see the attachment for figure.

Volume of solid rotation about y-axis using cylindrical shell method.

[tex]V=\int_a^b2\pi rhdx[/tex]

where,

a is lower limit (a=0)

b is upper limit (b=2)

r is radius (r=x)

h is height ([tex]h=y=\dfrac{x^2}{16}[/tex])

using the above formula the volume of solid we get

[tex]V=\int_0^22\pi\cdot\dfrac{x^3}{16}dx[/tex]

[tex]V=2\pi\cdot\dfrac{x^4}{64}|_0^2[/tex]

[tex]V=\dfrac{\pi}{2}[/tex]

Hence, The volume of solid will be [tex]\dfrac{\pi}{2}[/tex]

Ver imagen isyllus
ACCESS MORE