Answer:
The volume of solid will be [tex]\dfrac{\pi}{2}[/tex] cubic unit
Step-by-step explanation:
Given: The given curves [tex]y=\dfrac{x^2}{16}[/tex]
Rotation about y-axis to form a solid bounded by given curve, x=2 and y=0.
Please see the attachment for figure.
Volume of solid rotation about y-axis using cylindrical shell method.
[tex]V=\int_a^b2\pi rhdx[/tex]
where,
a is lower limit (a=0)
b is upper limit (b=2)
r is radius (r=x)
h is height ([tex]h=y=\dfrac{x^2}{16}[/tex])
using the above formula the volume of solid we get
[tex]V=\int_0^22\pi\cdot\dfrac{x^3}{16}dx[/tex]
[tex]V=2\pi\cdot\dfrac{x^4}{64}|_0^2[/tex]
[tex]V=\dfrac{\pi}{2}[/tex]
Hence, The volume of solid will be [tex]\dfrac{\pi}{2}[/tex]