Respuesta :
Answer:
hence the relative intensity is 3.0279 ×[tex]10^{-4}[/tex]
Explanation:
Given data
wavelength 755.0 nm = 755 ×[tex]10^{-9}[/tex] m
width d = 2.20 µm = 2.20×[tex]10^{-6}[/tex] m
screen distance D = 26.5 cm
I/Imax Yn = 13.0 cm
to find out
the relative intensity
solution
we know that
tanθ = Yn / D
here Yn is the distance from central maximum and D is here distance from screen put all these value
tanθ = 13 / 26.5
θ = 26.13 degree
so
relative intensity of light will be here
I/ Imax = (sinФ/Ф)² ................1
here Ф is angle that is
Ф = πdsinθ / wavelength
Ф = π(2.20×[tex]10^{-6}[/tex])sin26.13 / ( 755 ×[tex]10^{-9}[/tex])
Ф = 7.689
so we put Ф = 7.689 in equation 1
I/ Imax = (sinФ/Ф)²
I/ Imax = (sin7.689/7.689)²
I/ Imax = 3.0279 ×[tex]10^{-4}[/tex]
hence the relative intensity is 3.0279 ×[tex]10^{-4}[/tex]
Answer:
The relative intensity of light is [tex]3.04\times10^{-4}[/tex].
Explanation:
Given that,
Wavelength = 755.0 nm
Width [tex]d= 2.20\ \mum[/tex]
Distance from screen= 26.5 cm
Distance away from the central maximum = 13.0 cm
Relative intensity of light [tex]\dfrac{I}{I_{max}}=13.0\ cm[/tex]
We need to calculate the distance
[tex]tan\theta=\dfrac{y_{n}}{D}[/tex]
[tex]\theta=\tan^{-1}\dfrac{13}{26.5}[/tex]
[tex]\theta=26.13^{\circ}[/tex]
The relative intensity of light is
[tex]\dfrac{I}{I_{max}}=(\dfrac{\sin\phi}{\phi})^2[/tex]
Where, [tex]\phi=\dfrac{\pi d\sin\theta}{\lambda}[/tex]
[tex]\phi=\dfrac{\pi\times2.20\times10^{-6}\times\sin26.13}{755\times10^{-9}}[/tex]
[tex]\phi=4.032[/tex]
Put the value of [tex]\phi[/tex]
[tex]\dfrac{I}{I_{max}}=(\dfrac{\sin4.032}{4.032})^2[/tex]
[tex]\dfrac{I}{I_{max}}=3.04\times10^{-4}[/tex]
Hence, The relative intensity of light is [tex]3.04\times10^{-4}[/tex].