A 25.00-mL sample of propionic acid, HC3H5O2, of unknown concentration was titrated with 0.141 M KOH. The equivalence point was reached when 43.76 mL of base had been added. What is the hydroxide-ion concentration at the equivalence point? Ka for propionic acid is 1.3 × 10–5 at 25°C. a. 1.5 × 10-9 M b. 1.1 × 10-3 M c. 1.1 × 10-5 M d. 8.3 × 10-6 M e. 1.0 × 10-7 M

Respuesta :

Answer:

Concentration of hydroxide-ion at equivalence point = [tex]8.3\times 10^{-6}M[/tex]

Explanation:

[tex]HC_{3}H_{5}O_{2}+KOH\rightarrow C_{3}H_{5}O_{2}^{-}K^{+}+H_{2}O[/tex]

1 mol of [tex]HC_{3}H_{5}O_{2}[/tex] reacts with 1 mol of KOH to produce 1 mol of [tex]C_{3}H_{5}O_{2}^{-}[/tex]

At equivalence point, all [tex]HC_{3}H_{5}O_{2}[/tex] gets converted to [tex]C_{3}H_{5}O_{2}^{-}[/tex].

Moles of [tex]C_{3}H_{5}O_{2}^{-}[/tex] produced at equivalence point is equal to moles of KOH added to reach equivalence point.

So, moles of [tex]C_{3}H_{5}O_{2}^{-}[/tex] produced = [tex]\frac{43.76\times 0.141}{1000}moles=0.00617moles[/tex]

Total volume of solution at equivalence point = (25.00+43.76) mL = 68.76 mL

Concentration of [tex]C_{3}H_{5}O_{2}^{-}[/tex] at equivalence point = [tex]\frac{0.00617\times 1000}{68.76}M=0.0897M[/tex]

[tex]OH^{-}[/tex] produced at equivalence point is due to hydrolysis of [tex]C_{3}H_{5}O_{2}^{-}[/tex]. We have to construct an ICE table to calculate concentration of [tex]OH^{-}[/tex] at equivalence point.

[tex]C_{3}H_{5}O_{}^{-}+H_{2}O\rightleftharpoons HC_{3}H_{5}O_{2}+OH^{-}[/tex]

I:0.0897                               0                    0

C: -x                                     +x                   +x

E: 0.0897-x                          x                      x

[tex]\frac{[HC_{3}H_{5}O_{2}][OH^{-}]}{[C_{3}H_{5}O_{2}^{-}]}=K_{b}(C_{3}H_{5}O_{2}^{-})=\frac{10^{-14}}{K_{a}(HC_{3}H_{5}O_{2})}[/tex]

species inside third bracket represent equilibrium concentrations

So, [tex]\frac{x^{2}}{0.0897-x}=7.69\times 10^{-10}[/tex]

or, [tex]x^{2}+(7.69\times 10^{-10}\times x)-(6.90\times 10^{-11})=0[/tex]

So, [tex]x=\frac{-(7.69\times 10^{-10})+\sqrt{(7.69\times 10^{-10})^{2}+(4\times 6.90\times 10^{-11})}}{2}[/tex]M = [tex]8.3\times 10^{-6}M[/tex]

So, concentration of hydroxide-ion at equivalence point = x M =  [tex]8.3\times 10^{-6}M[/tex]

ACCESS MORE