Let F be an inverse square field, that is, F(r) = cr/|r|3 for some constant c, where r = xi + yj + zk. Show that the flux of F across a sphere S with center the origin is independent of the radius of S.

Respuesta :

[tex]\vec r(x,y,z)=x\,\vec\imath+y\,\vec\jmath+z\,vec k[/tex]

[tex]\vec F(\vec r)=\dfrac{cx\,\vec\imath+cy\,\vec\jmath+cz\,\vec k}{(x^2+y^2+z^2)^{3/2}}[/tex]

[tex]\vec F[/tex] has divergence 0, so the flux of [tex]\vec F[/tex] across a sphere of any radius will always be 0 and thus independent of the sphere's radius.

ACCESS MORE
EDU ACCESS