Answer:
The P-value is 0.016.
Step-by-step explanation:
Given information:
Significance level, α = 0.05
Married men Single men
Sample size 60 60
Sample mean $880 $845
Population variance 5200 7100
We need to test whether there is a difference in the two amounts.
Null hypothesis: [tex]H_0:\mu_1=\mu_2[/tex]
Alternative hypothesis: [tex]H_1:\mu_1\neq \mu_2[/tex]
The formula for t-statistics is
[tex]t=\frac{(\overline{x}_1-\overline{x}_2)+(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}}[/tex]
[tex]t=\frac{(880-845)+(0)}{\sqrt{\frac{5200}{60}+\frac{7100}{60}}}[/tex]
[tex]t=2.44450603519[/tex]
[tex]t\approx 2.44[/tex]
Degree of freedom is
[tex]d.f=n_1+n_2-2=60+60-2=118[/tex]
The P-value for [tex]t=2.44[/tex] at significance level α = 0.05, wih degree of freedom 119 is 0.016174. Approximately it can be written as 0.016.
Therefore the P-value is 0.016.