Answer: (0.458,0.582)
Step-by-step explanation:
Given : Sample size : [tex]n=815[/tex]
The proportion of U.S. adult Twitter users get at least some news on Twitter. : [tex]p=0.52[/tex]
Standard error : [tex]s.=0.024[/tex]
Significance level : [tex]\alpha: 1-0.99=0.01[/tex]
Critical value : [tex]z_{\alpha/2}=2.576[/tex]
The confidence interval for population proportion is given by :-
[tex]p\pm\ z_{\alpha/2}\ s\\\\=0.52\pm(2.576)(0.024)\\\\\approx0.52\pm0.062=(0.52-0.062,0.52+0.062)=(0.458,0.582)[/tex]
Hence, the 99% confidence interval for the fraction of U.S. adult Twitter users who get some news on Twitter, and interpret the confidence interval in context= (0.458,0.582)