Answer:
The ratio of electric force to the gravitational force is [tex]2.27\times 10^{39}[/tex]
Explanation:
It is given that,
Distance between electron and proton, [tex]r=4.53\ A=4.53\times 10^{-10}\ m[/tex]
Electric force is given by :
[tex]F_e=k\dfrac{q_1q_2}{r^2}[/tex]
Gravitational force is given by :
[tex]F_g=G\dfrac{m_1m_2}{r^2}[/tex]
Where
[tex]m_1[/tex] is mass of electron, [tex]m_1=9.1\times 10^{-31}\ kg[/tex]
[tex]m_2[/tex] is mass of proton, [tex]m_2=1.67\times 10^{-27}\ kg[/tex]
[tex]q_1[/tex] is charge on electron, [tex]q_1=-1.6\times 10^{-19}\ kg[/tex]
[tex]q_2[/tex] is charge on proton, [tex]q_2=1.6\times 10^{-19}\ kg[/tex]
[tex]\dfrac{F_e}{F_g}=\dfrac{kq_1q_2}{Gm_1m_2}[/tex]
[tex]\dfrac{F_e}{F_g}=\dfrac{9\times 10^9\times (1.6\times 10^{-19})^2}{6.67\times 10^{-11}\times 9.1\times 10^{-31}\times 1.67\times 10^{-27}}[/tex]
[tex]\dfrac{F_e}{F_g}=2.27\times 10^{39}[/tex]
So, the ratio of electric force to the gravitational force is [tex]2.27\times 10^{39}[/tex]. Hence, this is the required solution.