An airplane is taking off headed due north with an air speed of 173 miles per hour at an angle of 18° relative to the
horizontal. The wind is blowing with a velocity of 42 miles per hour at an angle of S47°E. Find a vector that represents the
resultant velocity of the plane relative to the point of takeoff. Let i point east, j point north, and k point up.

Respuesta :

Answer:

[tex]v_\text{plane} = 30.72\; \vec{i} + 193.18\; \vec{j} + 53.46\; \vec{k}[/tex].

Step-by-step explanation:

Refer to the first diagram:

  • Component of the plane's velocity in the direction of vector [tex]\vec{j}[/tex] relative to the air: [tex]173 \cos{18^{\circ}}[/tex];
  • Component of the plane's velocity in the direction of vector [tex]\vec{k}[/tex] relative to the air:  [tex]173\sin{18^{\circ}}[/tex].

The direction of the plane's velocity relative to the air is normal to vector [tex]\vec{i}[/tex]. Therefore, the component of the plane's velocity (relative to the air) in that direction will equal zero. Thus

[tex]\vec{v}_\text{velocity of plane relative to air} = 0 \; \vec{i} + (173\;\cos{18^{\circ}})\; \vec{j} + (173\;\sin{18^{\circ}})\; \vec{k}[/tex].

Refer to the second diagram,

  • Component of the velocity of the wind in the direction of vector [tex]\vec{i}[/tex]: [tex]42 \sin{47^{\circ}}[/tex];
  • Component of the velocity of the wind in the direction of vector [tex]\vec{j}[/tex]: [tex]- 42 \cos{47^{\circ}}[/tex].

Assume that the wind blows horizontally. The direction of the wind will be normal to vector [tex]\vec{k}[/tex]. The component of the velocity of the wind in the direction of vector [tex]\vec{k}[/tex] will thus equal zero. Therefore,

[tex]\vec{v}_\text{wind} = (42\sin{47^{\circ}})\;\vec{i} + (42\cos{47^{\circ}})\;\vec{j} + 0\;\vec{k}[/tex].

The ground speed of the plane [tex]\vec{v}_\text{velocity of plane relative to ground}[/tex] is the sum of [tex]\vec{v}_\text{velocity of plane relative to air}[/tex] and [tex]\vec{v}_\text{wind}[/tex].

That is:

[tex]\begin{aligned}&\vec{v}_\text{velocity of plane relative to ground} \\ =& \vec{v}_\text{velocity of plane relative to air} +\vec{v}_\text{wind} \\ =& \left[0 \; \vec{i} + (173\;\cos{18^{\circ}})\; \vec{j} + (173\;\sin{18^{\circ}})\; \vec{k}\right] + \\ &\left[(42\sin{47^{\circ}})\;\vec{i} + (42\cos{47^{\circ}})\;\vec{j} + 0\;\vec{k} \right] \\= &  30.72\; \vec{i} + 193.18\; \vec{j} + 53.46\; \vec{k} \end{aligned}[/tex].

Ver imagen jacob193
Ver imagen jacob193
ACCESS MORE