Respuesta :
Answer:
The pressure and maximum height are [tex]1.58\times10^{6}\ N/m^2[/tex] and 161.22 m respectively.
Explanation:
Given that,
Diameter = 3.00 cm
Exit diameter = 9.00 cm
Flow = 40.0 L/s²
We need to calculate the pressure
Using Bernoulli effect
[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2+\rho g h_{1}=P_{2}+\dfrac{1}{2}\rho v_{2}^2+\rho g h_{2}[/tex]
When two point are at same height so ,
[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2=P_{2}+\dfrac{1}{2}\rho v_{2}^2[/tex]....(I)
Firstly we need to calculate the velocity
Using continuity equation
For input velocity,
[tex]Q=A_{1}v_{1}[/tex]
[tex]v_{1}=\dfrac{Q}{A_{1}}[/tex]
[tex]v_{1}=\dfrac{40.0\times10^{-3}}{\pi\times(1.5\times10^{-2})^2}[/tex]
[tex]v_{1}=56.58\ m/s[/tex]
For output velocity,
[tex]v_{2}=\dfrac{40.0\times10^{-3}}{\pi\times(4.5\times10^{-2})^2}[/tex]
[tex]v_{2}=6.28\ m/s[/tex]
Put the value into the formula
[tex]P_{1}-P_{2}=\dfrac{1}{2}\rho(v_{1}^2-v_{2}^2)[/tex]
[tex]\Delta P=\dfrac{1}{2}\times1000\times(56.58^2-6.28^2)[/tex]
[tex]\Delta P=1.58\times10^{6}\ N/m^2[/tex]
(b). We need to calculate the maximum height
Using formula of height
[tex]\Delta P=\rho g h[/tex]
Put the value into the formula
[tex]1.58\times10^{6}=1000\times9.8\times h[/tex]
[tex]h=\dfrac{1.58\times10^{6}}{1000\times9.8}[/tex]
[tex]h=161.22\ m[/tex]
Hence, The pressure and maximum height are [tex]1.58\times10^{6}\ N/m^2[/tex] and 161.22 m respectively.