What is the pressure drop due to the Bernoulli Effect as water goes into a 3.00-cm-diameter nozzle from a 9.00-cm-diameter fire hose while carrying a flow of 40.0 L/s? (b) To what maximum height above the nozzle can this water rise? (The actual height will be significantly smaller due to air resistance.)

Respuesta :

Answer:

The pressure and maximum height are [tex]1.58\times10^{6}\ N/m^2[/tex] and 161.22 m respectively.

Explanation:

Given that,

Diameter = 3.00 cm

Exit diameter = 9.00 cm

Flow = 40.0 L/s²

We need to calculate the pressure

Using Bernoulli effect

[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2+\rho g h_{1}=P_{2}+\dfrac{1}{2}\rho v_{2}^2+\rho g h_{2}[/tex]

When two point are at same height so ,

[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2=P_{2}+\dfrac{1}{2}\rho v_{2}^2[/tex]....(I)

Firstly we need to calculate the velocity

Using continuity equation

For input velocity,

[tex]Q=A_{1}v_{1}[/tex]

[tex]v_{1}=\dfrac{Q}{A_{1}}[/tex]

[tex]v_{1}=\dfrac{40.0\times10^{-3}}{\pi\times(1.5\times10^{-2})^2}[/tex]

[tex]v_{1}=56.58\ m/s[/tex]

For output velocity,

[tex]v_{2}=\dfrac{40.0\times10^{-3}}{\pi\times(4.5\times10^{-2})^2}[/tex]

[tex]v_{2}=6.28\ m/s[/tex]

Put the value into the formula

[tex]P_{1}-P_{2}=\dfrac{1}{2}\rho(v_{1}^2-v_{2}^2)[/tex]

[tex]\Delta P=\dfrac{1}{2}\times1000\times(56.58^2-6.28^2)[/tex]

[tex]\Delta P=1.58\times10^{6}\ N/m^2[/tex]

(b). We need to calculate the maximum height

Using formula of height

[tex]\Delta P=\rho g h[/tex]

Put the value into the formula

[tex]1.58\times10^{6}=1000\times9.8\times h[/tex]

[tex]h=\dfrac{1.58\times10^{6}}{1000\times9.8}[/tex]

[tex]h=161.22\ m[/tex]

Hence, The pressure and maximum height are [tex]1.58\times10^{6}\ N/m^2[/tex] and 161.22 m respectively.

ACCESS MORE