Answer:
[tex]\frac {dQ}{dt}=0.0001-\frac {Q}{70}\times 0.002[/tex]
Explanation:
Given that the volume is [tex]70\ m^3[/tex]
The air flows (F) at the rate of [tex]0.002\ m^3/min[/tex]. The concentration of carbon monoxide in the air is 5%.
Let Q be the amount of the carbon monoxide present in the room at time t. then,
[tex]\frac {dQ}{dt}=Rate\ of\ Q_{in}-Rate\ of\ Q_{out}[/tex]
Also,
[tex]Rate\ of\ Q_{in}=5\%\ of\ 0.002=0.0001[/tex]
[tex]Rate\ of\ Q_{out}=\frac {Q}{70}\times 0.002[/tex]
Thus,
[tex]\frac {dQ}{dt}=0.0001-\frac {Q}{70}\times 0.002[/tex]