The age of a piece of wood from an archeological site is to be determined using the Carbon-14 method. The activity of the sample is measured to be 0.574 times the Carbon-14 activity of living plants. What is the age of the sample in years? (The half-life of the Carbon-14 isotope is 5730 years.)

Respuesta :

Answer:

4589.05 year

Explanation:

The relation of activity is given by [tex]A=A_0e^{\lambda t}[/tex] we have given [tex]\frac{A}{A_0}=0.574[/tex]

Half life [tex]T=5730\ years[/tex]

We know that half life [tex]T=\frac{0.693}{\lambda }[/tex]

[tex]\lambda =\frac{0.693}{5730}=1.2094\times 10^{-4}\ per\ year[/tex]

So [tex]0.574=e^{-1.2094\times 10^{-4}t}[/tex]

[tex]e^{1.2094\times 10^{-4}t}=\frac{1}{0.574}=1.742[/tex]

[tex]{1.2094\times 10^{-4}t}=ln1.742=0.555[/tex]

[tex]t=\frac{0.555}{1.2094\times 10_{-4}}=4589.05\ year[/tex]

ACCESS MORE