Answer:
The magnetic field strength and the electrons' energy are 0.077 T and 0.8906 eV.
Explanation:
Given that,
Diameter = 2.62 mm
Frequency = 2.15 GHz
(A). We need to calculate the magnetic field strength
Using formula of the magnetic field strength
[tex]B=\dfrac{2\pi mf}{e}[/tex]
Where, f = frequency
e = charge of electron
Put the value into the formula
[tex]B=\dfrac{2\times3.14\times9.1\times10^{-31}\times2.15\times10^{9}}{1.6\times10^{-19}}[/tex]
[tex]B=0.077\ T[/tex]
(B). We need to calculate the energy of electron
Using formula of energy
[tex]E=\dfrac{1}{2}m(r\omega)^2[/tex]
[tex]E=\dfrac{1}{2}\times9.1\times10^{-31}\times(1.31\times10^{-3}\times2\pi\times2.15\times10^{9})^2[/tex]
[tex]E=1.4249\times10^{-16}\ J[/tex]
The energy in eV
[tex]1 eV=1.6\times10^{-16}\ J[/tex]
[tex]E=\dfrac{1.4249\times10^{-16}}{1.6\times10^{-16}}[/tex]
[tex]E=0.8906\ eV[/tex]
Hence, The magnetic field strength and the electrons' energy are 0.077 T and 0.8906 eV.