Answer:
Step-by-step explanation:
Given that X is N(50,3)
So whenever we want score for x, we can convert this to Z and use std normal distribution table.
The formula for conversion is
[tex]Z = \frac{x-50}{3}[/tex]
Using this we can find out the corresponding scores
a) [tex]P(X\leq X_0) = 0.8413[/tex]
Z value = 1 and hence
[tex]X_o = 50+1(3) = 53\\[/tex]
b) [tex]P(x > x0) = 0.25[/tex]
[tex]z=0.5-0.0987=0.4013\\X0= 50+3(0.4013)\\= 51.2039[/tex]
c) [tex]P(x > x0) = 0.95\\z=2\\X_0 = 50+6 =56[/tex]
d) [tex]P(41 ≤ x < x0) = 0.8630 \\P(-3 ≤ Z<Z_0) = 0.8630\\Z_0 = 1.10\\X_0 = 50+3.3 = 53.3[/tex]
e) 10th percentile is [tex]50-1.28(3) =46.16[/tex]
f) This is 99th percentile
=[tex]50+2.33(3)\\= 56.69[/tex]