Answer: ($3.055, $3.205)
Step-by-step explanation:
Given : Significance level : [tex]\alpha: 1-0.95=0.5[/tex]
Critical value : [tex]z_{\alpha/2}=1.96[/tex]
Sample size : n= 36
Sample mean : [tex]\overline{x}=\$\ 3.13[/tex]
Standard deviation : [tex]\sigma= \$\ 0.23[/tex]
The confidence interval for population mean is given by :_
[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]\text{i.e. }\$\ 3.13\pm (1.96)\dfrac{0.23}{\sqrt{36}}\\\\\approx\$\ 3.13\pm0.075\\\\=(\$\ 3.13-0.075,\$\ 3.13+0.075)=(\$\ 3.055,\$\ 3.205)[/tex]
Hence, the 95% confidence interval to estimate the population mean = ($3.055, $3.205)