Suppose a researcher is interested in understanding the variation in the price of store brand milk. A random sample of 36 grocery stores selected from a population and the mean price of store brand milk is calculated. The sample mean is $3.13 with a standard deviation of $0.23. Construct a 95% confidence interval to estimate the population mean.

Respuesta :

Answer: ($3.055, $3.205)

Step-by-step explanation:

Given : Significance level : [tex]\alpha: 1-0.95=0.5[/tex]

Critical value : [tex]z_{\alpha/2}=1.96[/tex]

Sample size : n= 36

Sample mean : [tex]\overline{x}=\$\ 3.13[/tex]

Standard deviation : [tex]\sigma= \$\ 0.23[/tex]

The confidence interval for population mean is given by :_

[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

[tex]\text{i.e. }\$\ 3.13\pm (1.96)\dfrac{0.23}{\sqrt{36}}\\\\\approx\$\ 3.13\pm0.075\\\\=(\$\ 3.13-0.075,\$\ 3.13+0.075)=(\$\ 3.055,\$\ 3.205)[/tex]

Hence, the 95% confidence interval to estimate the population mean = ($3.055, $3.205)

ACCESS MORE
EDU ACCESS