SAT Math Question (Thanks!)

f(x) = x^2 - 2x + 8
g(x) = -x^2 +18x +4

The two functions defined above are equal to each other when x=5+a or x=5-a, where a is a constant. What is the value of a?

Respuesta :

Answer:

[tex]\sqrt{23}[/tex].

Step-by-step explanation:

So we are given the equations are equal for [tex]x=5\pm a[/tex].

If the functions are equal for those values then their difference is zero for those values:

[tex]f-g=0[/tex]

[tex](x^2- 2x+8)-(-x^2 +18x +4)=0[/tex]

Combine like terms; keep in mind we are subtracting over the parenthesis:

[tex]2x^2-20x+4=0[/tex]

Since all terms have a common factor of 2, then divide both sides by 2:

[tex]x^2-10x+2=0[/tex]

When compared to [tex]ax^2+bx+c=0[/tex] we should see:

[tex]a=1[/tex]

[tex]b=-10[/tex]

[tex]c=2[/tex]

Now use quadratic formula.

[tex]x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]

Plug in the values we found:

[tex]x=\frac{10 \pm \sqrt{(-10)^2-4(1)(2)}}{2(1)}[/tex]

Let's simplify:

[tex]x=\frac{10 \pm \sqrt{100-8}}{2}[/tex]

[tex]x=\frac{10 \pm \sqrt{92}}{2}[/tex]

92 isn't a perfect square but contains a factor that is; 92=4(23):

[tex]x=\frac{10 \pm \sqrt{4} \sqrt{23}}{2}[/tex]

[tex]x=\frac{10 \pm 2\sqrt{23}}{2}[/tex]

Divide top and bottom by since all three terms have a common factor 2:

[tex]x=\frac{10 \pm 2\sqrt{23}}{1}[/tex]

[tex]x=5 \pm \sqrt{23}[/tex]

So f and g are equal for:

[tex]x=5 \pm \sqrt{23}[/tex]

When compared to [tex]x=5\pm a[/tex] we see that [tex]\sqrt{23}[/tex].