Answer:
[tex]\sqrt{23}[/tex].
Step-by-step explanation:
So we are given the equations are equal for [tex]x=5\pm a[/tex].
If the functions are equal for those values then their difference is zero for those values:
[tex]f-g=0[/tex]
[tex](x^2- 2x+8)-(-x^2 +18x +4)=0[/tex]
Combine like terms; keep in mind we are subtracting over the parenthesis:
[tex]2x^2-20x+4=0[/tex]
Since all terms have a common factor of 2, then divide both sides by 2:
[tex]x^2-10x+2=0[/tex]
When compared to [tex]ax^2+bx+c=0[/tex] we should see:
[tex]a=1[/tex]
[tex]b=-10[/tex]
[tex]c=2[/tex]
Now use quadratic formula.
[tex]x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]
Plug in the values we found:
[tex]x=\frac{10 \pm \sqrt{(-10)^2-4(1)(2)}}{2(1)}[/tex]
Let's simplify:
[tex]x=\frac{10 \pm \sqrt{100-8}}{2}[/tex]
[tex]x=\frac{10 \pm \sqrt{92}}{2}[/tex]
92 isn't a perfect square but contains a factor that is; 92=4(23):
[tex]x=\frac{10 \pm \sqrt{4} \sqrt{23}}{2}[/tex]
[tex]x=\frac{10 \pm 2\sqrt{23}}{2}[/tex]
Divide top and bottom by since all three terms have a common factor 2:
[tex]x=\frac{10 \pm 2\sqrt{23}}{1}[/tex]
[tex]x=5 \pm \sqrt{23}[/tex]
So f and g are equal for:
[tex]x=5 \pm \sqrt{23}[/tex]
When compared to [tex]x=5\pm a[/tex] we see that [tex]\sqrt{23}[/tex].