Respuesta :

Answer:

1. (rs)(4)=8

2. (r/s)(3)=2

Step-by-step explanation:

1. To find (r s)(4) we need to find (r s)(x)

[tex](rs)(x)=r(x)*s(x)\\\\(rs)(x)=2\sqrt{x} *\sqrt{x} \\\\(rs)(x)=2x[/tex]

Now we can plug in 4 for x

[tex](rs)(x)=2x\\(rs)(4)=2(4)\\(rs)(4)=8[/tex]

2. To find (r/s)(3) we need to find (r/s)(x), and we can do that by dividing r(x) by s(x)

[tex]\frac{r}{s} (x)=\frac{r(x)}{s(x)} \\\frac{r}{s} (x)=\frac{2\sqrt{x} }{\sqrt{x} } \\\frac{r}{s} (x)=2 \\[/tex]

Since (r/s)(x)=2, the output will be always be 2, regardless of what the x value is.  So (r/s)(3)=2

Answer:

[tex](rs)(4)=8[/tex]

[tex](\frac{r}{s})(3)=2[/tex]

Step-by-step explanation:

We have been given two functions [tex]r(x)=2\sqrt{x}[/tex] and [tex]s(x)=\sqrt{x}[/tex].

To find [tex](rs)(4)[/tex] we will use rule [tex](f\cdot g)(x)=f(x)\cdot g(x)[/tex].

[tex](rs)(4)=r(4)\cdot s(4)[/tex]

[tex]r(4)=2\sqrt{4}[/tex]

[tex]r(4)=2*2[/tex]

[tex]r(4)=4[/tex]

[tex]s(x)=\sqrt{x}[/tex]

[tex]s(4)=\sqrt{4}[/tex]

[tex]s(4)=2[/tex]

[tex](rs)(4)=4\cdot 2[/tex]

[tex](rs)(4)=8[/tex]

Therefore, [tex](rs)(4)=8[/tex].

To find [tex](\frac{r}{s})(3)[/tex] we will use rule [tex](\frac{f}{g})(x)=\frac{f(x)}{g(x)}[/tex].

[tex](\frac{r}{s})(3)=\frac{r(3)}{s(3)}[/tex]

[tex](\frac{r}{s})(3)=\frac{2\sqrt{3}}{\sqrt{3}}[/tex]

[tex](\frac{r}{s})(3)=2[/tex]

Therefore, [tex](\frac{r}{s})(3)=2[/tex].