Respuesta :

Answer:

[tex]\frac{1}{2^{4}*14^{3} *x^{28}*y^{46}}[/tex]

Step-by-step explanation:

To simplify the expression [tex]\frac{14x^{20}y^{10}}{(2*14*x^{12} y^{14} )^{4}}[/tex] first we need to raise every member of the denominator to the given exponent, number 4

Remember that [tex](x^{b} )^{c} =z^{b*c}[/tex] where 'a' and 'b are natural numbers (any numbers you want

[tex]\frac{14x^{20}*y^{10}}{2^{4}*14^{4}*x^{48}*y^{56}}[/tex]

Where we can make some operations, remember that [tex]\frac{x^{a} }{x^{c} }=x^{a-c}[/tex]

[tex]\frac{1}{2^{4}*14^{3} *x^{28}*y^{46}}[/tex]

We have assumed that nor x, nor y equals 0 in any moment, since if that would happen, we ca not simplify anything bacause error math 0/0.

Answer:

[tex]\frac{1}{43904x^{28}y^{46}}[/tex]

Step-by-step explanation:

Simplify:

[tex]\frac{14x^{20}y^{10}}{(28x^{12}y^{14})^4}[/tex]

Use this property in the denominator:

[tex](x^y)^z=x^{yz}[/tex]

And multiply each exponent in the denominator by 4:

[tex]\frac{14x^{20}y^{10}}{(28^4x^{48}y^{56})}[/tex]

Use these properties:

[tex]x^{-n}=\frac{1}{x^n}[/tex]

[tex]x^yx^z=x^{y+z}[/tex]

And combine powers:

[tex]\frac{14x^{20-48}y^{10-56}}{28^4} =\frac{14x^{-28} y^{-46}}{28^4} =\frac{14}{28^4 x^{28} y^{46}}[/tex]

Divide the constants:

[tex]\frac{14}{28^4} =\frac{14}{614656} =\frac{1}{43904}[/tex]

Therefore, the simplied expression is:

[tex]\frac{1}{43904x^{28}y^{46}}[/tex]