Answer:
[tex]\large\boxed{m\angle A\approx39^o}[/tex]
Step-by-step explanation:
Use the cosine law:
[tex]a^2=b^2+c^2-2bc\cos A[/tex]
We have:
[tex]a=14,\ b=17,\ c=22[/tex]
Substitute:
[tex]14^2=17^2+22^2-2(17)(22)\cos A\\\\196=289+484-748\cos A\\\\196=773-748\cos A\qquad\text{subtract 773 from both sides}\\\\-577=-748\cos A\qquad\text{divide both sides by (-748)}\\\\\cos A=\dfrac{577}{748}\\\\\cos A\approx0.7714\to m\angle A\approx39^o[/tex]