Respuesta :

Answer:

This is the one I referred to as Problem 3.

Step-by-step explanation:

The length of OP is going to require a bit more work since we don't know P yet.

We need to find the equation for the line that travels through A & B.

Then we need to find the line that travels through O & P such that the choice in P makes OP perpendicular to AB. Perpendicular lines have opposite reciprocal slopes. The cool thing about OP is it is easy to identity the y-intercept. So the line for OP will just be [tex]y=\text{opposite reciprocal slope of }AB \cdot x[/tex]. Slope-intercept form is y=mx+b where m is the slope and b is the y-intercept.

Let's go ahead and find the slope of AB.

The slope of AB can be found by using the formula:

[tex]\frac{y_2-y_1}{x_2-x_1}[/tex] where [tex](x_1,y_1,)[/tex] and [tex](x_2,y_2)[/tex] are points given to you on the line.

The points given to us are: [tex](-1,1)[/tex] and [tex](\frac{1}{a},\frac{1}{a^2})[/tex]

So entering these points into the formula gives us:

[tex]\frac{\frac{1}{a ^2}-1}{\frac{1}{a}-(-1)}[/tex]

Simplifying:

[tex]\frac{\frac{1}{a^2}-1}{\frac{1}{a}+1}[/tex]

Clearing the mini-fractions by multiplying top and bottom by [tex]a^2[/tex]:

[tex]\frac{1-a 2}{a+a^2}[/tex].

The top is a difference of squares and so can use formula [tex]a^2-b^2=(a-b)(a+b)[/tex].

The bottom both terms have a common factor of [tex]a[/tex] so I can just factor that out of the two terms.

Let's do that:

[tex]\frac{(1-a)(1+a)}{a(1+a)}[/tex]

There is a common factor to cancel:

[tex]\frac{1-a}{a}[/tex]

The slope of AB is [tex]\frac{1-a}{a}[/tex].

I'm going to use point-slope form to determine my linear equation for AB.

Point-slope form is [tex]y-y_1=m(x-x_1)[/tex] where [tex]m[/tex] is slope and [tex](x_1,y_1)[/tex] is a point on the line that you know.

So we have that (-1,1) is the point where [tex]m[/tex] is [tex]\frac{1-a}{a}[/tex].

Plugging this in gives us:

[tex]y-1=\frac{1-a}{a}(x-(-1))[/tex]

[tex]y=\frac{1-a}{a}(x+1)+1[/tex].

So the linear equation that goes through points A and B is:

[tex]y=\frac{1-a}{a}(x+1)+1[/tex].

Now we said earlier that the line for OP will be:

[tex]y=\text{opposite reciprocal slope of }AB \cdot x[/tex].

Opposite just means change the sign.

Reciprocal just means we are going to flip.

So the opposite reciprocal of [tex]\frac{1-a}{a}[/tex] is:

[tex]-\frac{a}{1-a}[/tex].

So the equation when graphed that goes through pts O & P is:

[tex]y=-\frac{a}{1-a}x[/tex].

Now to actually find this point P, I need to find the intersection of the lines I have found. This lines I found for AB & OP respectively are:

[tex]y=\frac{1-a}{a}(x+1)+1[/tex]

[tex]y=-\frac{a}{1-a}x[/tex]

I'm going to use substitution to solve this system.

[tex]\frac{1-a}{a}(x+1)+1=-\frac{a}{1-a}x[/tex]

To solve this equation for x, I need to get the terms that contain x on one side while the terms not containing x on the opposing side.

I'm going to distribute the [tex]\frac{1-a}{a}[/tex] to both terms in the ( ) next to it:

[tex]\frac{1-a}{a}x+\frac{1-a}{a}+1=-\frac{a}{1-a}x[/tex]

Now I'm to subtract [tex]\frac{1-a}{a}x[/tex] on both sides:

[tex]\frac{1-a}{a}+1=-\frac{a}{1-a}x-\frac{1-a}{a}x[/tex]

Factor out the x on the right hand side:

[tex]\frac{1-a}{a}+1=(-\frac{a}{1-a}-\frac{1-a}{a})x[/tex]

Now divide both sides by what x is being multiplied by:

[tex]\frac{\frac{1-a}{a}+1}{-\frac{a}{1-a}-\frac{1-a}{a}}=x[/tex]

We need to clear the mini-fractions by multiplying top and bottom by [tex]a(1-a)[/tex]:

[tex]\frac{(1-a)^2+a(1-a)}{-a^2-(1-a)^2}[/tex]

[tex]x=\frac{(1-a)^2+a(1-a)}{-a^2-(1-2a+a^2)}[/tex]

Distributing the - in front of the ( ) on bottom:

[tex]x=\frac{(1-a)^2+a(1-a)}{-a^2-1+2a-a^2}[/tex]

[tex]x=\frac{(1-a)^2+a(1-a)}{-2a^2-1+2a}[/tex]

I'm going to factor the [tex](1-a)[/tex] out on top since both of those terms have that as a common factor:

[tex]x=\frac{(1-a)(1-a+a)}{-2a^2-1+2a}[/tex]

This simplify to:

[tex]x=\frac{1-a}{-2a^2+2a-1}[/tex]

Now let's find the corresponding y-coord using either of one our equations.

I prefer the line for OP:

[tex]y=-\frac{a}{1-a}x[/tex] with [tex]x=\frac{1-a}{-2a^2+2a-1}[/tex]

[tex]y=-\frac{a}{1-a}(\frac{1-a}{-2a^2+2a-1})[/tex]  

[tex]1-a[/tex]'s cancel:

[tex]y=-\frac{a}{-2a^2+2a-1}[/tex]

[tex]y=\frac{a}{2a^2-2a+1}[/tex].

So point P is [tex](\frac{1-a}{-2a^2+2a-1},\frac{a}{2a^2-2a+1})[/tex].

So now we can actually use the distance formula to compute the thing we called the height of the triangle which was the distance between O & P:

[tex]\sqrt{(\frac{1-a}{-2a^2+2a-1}-0)^2+(\frac{a}{2a^2-2a+1}-0)^2}[/tex]

[tex]\sqrt{(\frac{1-a}{-2a^2+2a-1})^2+(\frac{a}{2a^2-2a+1})^2}[/tex]

[tex]\sqrt{(\frac{-1+a}{2a^2-2a+1})^2+(\frac{a}{2a^2-2a+1})^2}[/tex]

[tex]\sqrt{\frac{(-1+a)^2+a^2}{(2a^2-2a+1)^2}}[/tex]

Let's simplify the top using [tex](a+b)^2=a^2+2ab+b^2[/tex]:

[tex]\sqrt{\frac{1-2a+a^2+a^2}{(2a^2-2a+1)^2}}[/tex]

[tex]\sqrt{\frac{1-2a+2a^2}{(2a^2-2a+1)^2}}[/tex]

[tex]\sqrt{\frac{1}{2a^2-2a+1}}[/tex].

[tex]\frac{1}{\sqrt{2a^2-2a+1}}[/tex]