Answer:
r=15.53 nm
[tex]F=9.57\times 10^{-13}N[/tex]
Explanation:
Lets take electron is in between iron and uranium
Charge on electron[tex]q_1= -1.602\times 10^{-19}C[/tex]
Charge on iron[tex]q_2= 2\times 1.602\times 10^{-19}C[/tex]
Charge on uranium[tex]q_3= 1.602\times 10^{-19}C[/tex]
We know that force between two charge
[tex]F=K\dfrac{q_1 q_2}{r^2}[/tex]
[tex]K=9\times 10^9\dfrac{N-m^2}{c^2}[/tex]
For equilibrium force between electron and iron should be force between electron and uranium
Lets take distance between electron and uranium is r so distance between electron and iron will be 37.5-r nm
Now by balancing the force
[tex]K\dfrac{q_1 q_2}{r^2}=K\dfrac{q_1 q_3}{(37.5-r)^2}[/tex]
[tex]K\dfrac{q_1q_2}{(37.5-r)^2}=K\dfrac{q_1 q_3}{r^2}[/tex]
[tex]q_2= 2\timesq_1,q_3=q_1[/tex]
[tex]\dfrac{q_1\times 2\timesq_1}{r^2}=\dfrac{q_1\times q_1}{(37.5-r)^2}[/tex]
So r=15.53 nm
So force
[tex]F=9\times 10^9\dfrac{1.602\times 10^{-19}\times 1.602\times 10^{-19}}{(15.53\times 10^{-9})^2}[/tex]
[tex]F=9.57\times 10^{-13}N[/tex]