A uranium and iron atom reside a distance R = 37.50 nm apart. The uranium atom is singly ionized; the iron atom is doubly ionized. Calculate the distance r from the uranium atom necessary for an electron to reside in equilibrium. Ignore the insignificant gravitational attraction between the particles. Also, what is the magnitude of the force on the electron from the uranium ion?

Respuesta :

Answer:

r=15.53 nm

[tex]F=9.57\times 10^{-13}N[/tex]

Explanation:

Lets take electron is in between iron and uranium

Charge on electron[tex]q_1= -1.602\times 10^{-19}C[/tex]

Charge on iron[tex]q_2= 2\times 1.602\times 10^{-19}C[/tex]

Charge on uranium[tex]q_3= 1.602\times 10^{-19}C[/tex]

We know that force between two charge

[tex]F=K\dfrac{q_1 q_2}{r^2}[/tex]  

[tex]K=9\times 10^9\dfrac{N-m^2}{c^2}[/tex]

For equilibrium force between electron and iron should be force between electron and  uranium

Lets take distance between electron and  uranium is r so distance between electron and iron will be 37.5-r nm

Now by balancing the force

[tex]K\dfrac{q_1 q_2}{r^2}=K\dfrac{q_1 q_3}{(37.5-r)^2}[/tex]  

[tex]K\dfrac{q_1q_2}{(37.5-r)^2}=K\dfrac{q_1 q_3}{r^2}[/tex]  

[tex]q_2= 2\timesq_1,q_3=q_1[/tex]

[tex]\dfrac{q_1\times 2\timesq_1}{r^2}=\dfrac{q_1\times q_1}{(37.5-r)^2}[/tex]

So r=15.53 nm

So force

[tex]F=9\times 10^9\dfrac{1.602\times 10^{-19}\times 1.602\times 10^{-19}}{(15.53\times 10^{-9})^2}[/tex]  

[tex]F=9.57\times 10^{-13}N[/tex]