Answer: [tex](3.146,\ 3.454)[/tex]
Step-by-step explanation:
(a) Given : Sample size : [tex]n=25[/tex], which is less than 30 so we use t-test.
Sample mean : [tex]\overline{x}=3.30[/tex]
Standard deviation : [tex]\sigma= 0.45[/tex]
Significance level :[tex]\alpha=1-0.95=0.05[/tex]
Critical value : [tex]t_{n-1,\alpha/2}=t_{24,0.05}=1.711[/tex]
The confidence interval for population mean is given by :-
[tex]\overline{x}\ \pm t_{n-1,\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]
[tex]=3.30\pm(1.711)\dfrac{0.45}{\sqrt{25}}\\\\\approx3.30\pm0.1540\\\\=(3.30-0.1540,\ 3.30+0.1540)=(3.146,\ 3.454)[/tex]
Hence, the 95% confidence interval for the mean GPA among applicants to this MBA = [tex](3.146,\ 3.454)[/tex]