The Lagrangian is
[tex]L(x,y,\lambda)=2x^2+3y^2-4xy+\lambda(x+y-27)[/tex]
with critical points whenever
[tex]L_x=4x-4y+\lambda=0\implies\lambda=4y-4x[/tex]
[tex]L_y=6y-4x+\lambda=0\implies\lambda=4x-6y[/tex]
[tex]L_\lambda=x+y-27=0[/tex]
Solving for [tex]x[/tex] and [tex]y[/tex], we get
[tex]L_x=L_y=0\implies4y-4x=4x-6y\implies5y=4x[/tex]
[tex]L_\lambda=0\implies x+\dfrac45x=\dfrac95x=27\implies x=15[/tex]
[tex]L_\lambda=0\implies15+y=27\implies y=12[/tex]
so there is one critical point at (15, 12), at which point [tex]f(15,12)=162[/tex].
The Hessian matrix for this function is
[tex]H(x,y)=\begin{bmatrix}4&-4\\-4&6\end{bmatrix}[/tex]
with determinant 8 > 0, and [tex]f_{xx}=4>0[/tex], which tells us this point is a minimum.