Find the extremum of f(x,y) subject to the given constraint, and state whether it is a maximum or a minimum.
f ( x,y )=2 x^2 +3y^2 - 4 xy; x+ y =27
There is a minimum value of 162 located at (x, y)=( 15,12 ).

Respuesta :

The Lagrangian is

[tex]L(x,y,\lambda)=2x^2+3y^2-4xy+\lambda(x+y-27)[/tex]

with critical points whenever

[tex]L_x=4x-4y+\lambda=0\implies\lambda=4y-4x[/tex]

[tex]L_y=6y-4x+\lambda=0\implies\lambda=4x-6y[/tex]

[tex]L_\lambda=x+y-27=0[/tex]

Solving for [tex]x[/tex] and [tex]y[/tex], we get

[tex]L_x=L_y=0\implies4y-4x=4x-6y\implies5y=4x[/tex]

[tex]L_\lambda=0\implies x+\dfrac45x=\dfrac95x=27\implies x=15[/tex]

[tex]L_\lambda=0\implies15+y=27\implies y=12[/tex]

so there is one critical point at (15, 12), at which point [tex]f(15,12)=162[/tex].

The Hessian matrix for this function is

[tex]H(x,y)=\begin{bmatrix}4&-4\\-4&6\end{bmatrix}[/tex]

with determinant 8 > 0, and [tex]f_{xx}=4>0[/tex], which tells us this point is a minimum.