Respuesta :
Answer:
5.514
Step-by-step explanation:
we have given [tex]\bar{p}[/tex]=62% =0.62
n=528
claim : most of adults erase all their personal information online ([tex]p> 0.5[/tex]
p=0.5 q=1-p=1-0.5=0.5
now test statistic is
[tex]\frac{\bar{p}-p}{\sqrt{\frac{pq}{n}}}=\frac{0.62-0.5}{\sqrt{\frac{0.5\times 0.5}{528}}}=5.514[/tex]
so the test statistic =5.514
The test statics is [tex]5.514[/tex]
we have given [tex]\bar{p}[/tex]=[tex]62[/tex] % =[tex]0.62[/tex] and [tex]n=528[/tex]
Claim : Most of adults erase all their personal information online [tex]\therefore p>2[/tex]
Hence, at [tex]p=0.5, q=1-p=1-0.5=0.5[/tex]
Therefore test statistic is
[tex]\frac{\bar{p}-q}{\sqrt{\frac{\bar{p}q}{n}}}=\frac{{0.62}-0.5}{\sqrt{\frac{{0.62}\times 0.5}{528}}}=5.514[/tex]
So the test statistic =[tex]5.514[/tex]
Learn more about test statics.
https://brainly.com/app/ask?q=test+statistics