Salaries of 39 college graduates who took a statistics course in college have a​ mean, x​, of $ 61,600. Assuming a standard​ deviation, sigma​, of ​$17,362​, construct a 95​% confidence interval for estimating the population mean, μ.

Respuesta :

Answer:  (56150.92, 67049.08)

Step-by-step explanation:

The confidence interval for population mean is given by :-

[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

Given : Sample size : [tex]n=39[/tex]

Sample mean = [tex]\overline{x}=\$\ 61,600[/tex]

Standard deviation : [tex]\sigma=\$\ 17,362[/tex]

Significance level : [tex]1-0.95=0.05[/tex]

Critical value = [tex]z_{\alpha/2}=1.96[/tex]

Now, the  95​% confidence interval for estimating the population mean [tex]\mu [/tex]will be :-

[tex]61600\pm (1.96)\dfrac{17362}{\sqrt{39}}\\\\\approx61600\pm5449.08\\\\=(61600-5449.08,61600+5449.08)\\\\=(56150.92,\ 67049.08)[/tex]

Hence, the 95​% confidence interval for estimating the population mean = (56150.92, 67049.08)