Answer:
Lowest frequency that gives the minimum signal is 343 Hz
lowet frequency for maximum signal 686 Hz
Explanation:
D_1 = 2.00 m
D _2 =3.75 m
Δx = [tex]\sqrt {D_1^2 +D_2^2} - D_2[/tex]
=[tex]\sqrt {2.00^2 +3.75^2} - 3.75[/tex]
= 0.5 m
for minimum distructive interference, the path difference is
Δx = [tex]( n+ \frac{1}{2} \lambda[/tex]
for minimum n = 0
[tex]\lambda = 2\Delta x[/tex]
= 2*0.5 = 1 m
lowest frequency f = [tex]\frac[c}{\lambda}[/tex]
where c is speed of sound in air 343 m/s
[tex]f = \frac{343}{1} = 343 Hz[/tex]
b) lowet frequency for maximum signal
for minimum CONSTRUCTIVE interference, the path difference is
Δx = [tex]n\lambda[/tex]
for minimum n = 1
[tex]\lambda = Delta x[/tex]
= 0.5 m
lowest frequency f =[tex] \frac[c}{\lambda}[/tex]
f = [tex]\frac{343}{0.5} = 686 Hz[/tex]