Even when shut down after a period of normal use, a large commercial nuclear reactor transfers thermal energy at the rate of 150 MW by the radioactive decay of fission products. This heat transfer causes a rapid increase in temperature if the cooling system fails. a) Calculate the rate of temperature increase in degrees Celsius per second (°C/s) if the mass of the reactor core is 1.60×10^5 kg and it has an average specific heat of 0.3349 kJ/kg°C

Respuesta :

Answer:[tex]2.89\approx 2.9^{\circ}C/s[/tex]

Explanation:

Given

[tex]Power\left ( P\right )=150 MW[/tex]

mass of core[tex]\left ( m\right )=1.60\times 10^5 kg[/tex]

Average specific heat [tex]\left ( C\right )=0.3349 KJ/kg^{\circ}C[/tex]

And rate of increase of temperature =[tex]\frac{\mathrm{d}T}{\mathrm{d} t}[/tex]

Now

P=[tex]mc\frac{\mathrm{d}T}{\mathrm{d} t}[/tex]

[tex]150\times 10^6=1.60\times 10^5\times 0.3349\times \frac{\mathrm{d}T}{\mathrm{d} t}[/tex]

Thus [tex]\frac{\mathrm{d}T}{\mathrm{d} t}=[tex]\frac{1.60\times 10^5\times 0.3349}{150\times 10^6}[/tex]

[tex]\frac{\mathrm{d}T}{\mathrm{d} t}=2.89\approx 2.9^{\circ}C/s[/tex]