Answer:
a) 0.0137
b) 0.4579
Step-by-step explanation:
Let "X" represents the number of automobiles that arrive at a certain intersection per minute
a) [tex]P(X>10)[/tex] [tex]= 1- P(X\leq 10)[/tex]
[tex]1-\frac{e^a* a^X}{a!}[/tex]
[tex]= 1- [P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=7)+P(X=8)+P(X=9)+P(X=10)]\\= 1-0.0067-0.0377-0.0842-0.1404-0.1755-0.1755-0.1462-0.1044-0.0653-0.0363-0.0181\\= 1-0.9863\\= 0.0137[/tex]
b) [tex]P(X>2)[/tex]
[tex]P(X>2) = 1-P(X\leq 2)[/tex][tex]= 1-P(Y\leq 2)\\= 1-\int\limits^2_0 {\frac{x^{\alpha-1} * e^\frac{-x}{\beta } }{\beta^\alpha * 9! } } \, dx \\= 1-\int\limits^{10}_0 {\frac{y^9* e^{-y}}{9!} } \, dx \\= 1-0.5421\\= 0.4579[/tex]