What are the exact solutions of x2 − 3x − 5 = 0? x = the quantity of negative 3 plus or minus the square root of 29 all over 2 x = the quantity of 3 plus or minus the square root of 29 all over 2 x = the quantity of 3 plus or minus the square root of 11 all over 2 x = the quantity of negative 3 plus or minus the square root of 11 all over 2

Respuesta :

r3t40

Given [tex]x^2-3x-5=0[/tex] we cannot factor therefore we are forced to use quadratic equation to get solutions: [tex]x_1=\frac{3-\sqrt{29}}{2},x_2=\frac{3+\sqrt{29}}{2}[/tex]

Hope this helps.

r3t40

Answer:

The correct option is 2.

Step-by-step explanation:

The given equation is

[tex]x^2-3x-5=0[/tex]

If a quadratic equation is defined as [tex]ax^2+bx+c=0[/tex], then accoding to the quadratic formula

[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

In the given equation [tex]a=1, b=-3,c=-5[/tex].

Using quadratic formula we get,

[tex]x=\frac{-(-3)\pm \sqrt{(-3)^2-4(1)(-5)}}{2(1)}[/tex]

[tex]x=\frac{3\pm \sqrt{9+20}}{2}[/tex]

[tex]x=\frac{3\pm \sqrt{29}}{2}[/tex]

The exact solutions of the given equations are [tex]x=\frac{3\pm \sqrt{29}}{2}[/tex].

Therefore the correct option is 2.