Respuesta :
Given [tex]x^2-3x-5=0[/tex] we cannot factor therefore we are forced to use quadratic equation to get solutions: [tex]x_1=\frac{3-\sqrt{29}}{2},x_2=\frac{3+\sqrt{29}}{2}[/tex]
Hope this helps.
r3t40
Answer:
The correct option is 2.
Step-by-step explanation:
The given equation is
[tex]x^2-3x-5=0[/tex]
If a quadratic equation is defined as [tex]ax^2+bx+c=0[/tex], then accoding to the quadratic formula
[tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
In the given equation [tex]a=1, b=-3,c=-5[/tex].
Using quadratic formula we get,
[tex]x=\frac{-(-3)\pm \sqrt{(-3)^2-4(1)(-5)}}{2(1)}[/tex]
[tex]x=\frac{3\pm \sqrt{9+20}}{2}[/tex]
[tex]x=\frac{3\pm \sqrt{29}}{2}[/tex]
The exact solutions of the given equations are [tex]x=\frac{3\pm \sqrt{29}}{2}[/tex].
Therefore the correct option is 2.