Respuesta :
Answer:
Part 1) Option C) y = negative one divided by thirty six x²
Part 2) Option A) y = one divided by thirty six x²
Part 3) Vertex: (0, 0); Focus: one divided by sixteen comma zero; Directrix: x = negative one divided by sixteen; Focal width: 0.25
Part 4) Option C) x = one divided by twelve y²
Step-by-step explanation:
Part 1) Find the standard form of the equation of the parabola with a focus at (0, -9) and a directrix y = 9.
we know that
The vertex form of the equation of the vertical parabola is equal to
[tex](x-h)^{2}=4p(y-k)[/tex]
where
Vertex ----> (h,k)
Focus ----> F(h,k+p)
directrix -----> y=k-p
we have
F(0,-9)
so
h=0
k+p=-9 -----> equation A
y=9
so
k-p=9 ----> equation B
Adds equation A and equation B
k+p=-9
k-p=9
-----------
2k=0
k=0
so
Find the value of p
0+p=-9
p=-9
substitute in the equation
[tex](x-0)^{2}=4(-9)(y-0)[/tex]
[tex](x)^{2}=-36y[/tex]
Convert to standard form
isolate the variable y
[tex]y=-\frac{1}{36}x^{2}[/tex]
Part 2) Find the standard form of the equation of the parabola with a vertex at the origin and a focus at (0, 9)
we know that
The vertex form of the equation of the vertical parabola is equal to
[tex](x-h)^{2}=4p(y-k)[/tex]
where
Vertex ----> (h,k)
Focus ----> F(h,k+p)
directrix -----> y=k-p
we have
Vertex (0,0) -----> h=0,k=0
F(0,9)
so
k+p=9------> 0+p=9 -----> p=9
substitute in the equation
[tex](x-0)^{2}=4(9)(y-0)[/tex]
[tex](x)^{2}=36(y)[/tex]
Convert to standard form
isolate the variable y
[tex]y=\frac{1}{36}x^{2}[/tex]
Part 3) Find the vertex, focus, directrix, and focal width of the parabola.
x = 4y²
we know that
The vertex form of the equation of the horizontal parabola is equal to
[tex](y-k)^{2}=4p(x-h)[/tex]
where
Vertex ----> (h,k)
Focus ----> F(h+p,k)
directrix -----> x=h-p
we have
[tex]x=4y^{2}[/tex] -----> [tex]y^{2}=(1/4)x[/tex]
so
Vertex (0,0) ------> h=0,k=0
4p=1/4 ------> Focal width
p=1/16
Focus F(0+1/16,0) ----> F(1/16,0)
directrix -----> x=0-1/16 -----> x=-1/16
therefore
Vertex: (0, 0); Focus: one divided by sixteen comma zero; Directrix: x = negative one divided by sixteen; Focal width: 0.25
Part 4) Find the standard form of the equation of the parabola with a focus at (3, 0) and a directrix at x = -3.
we know that
The vertex form of the equation of the horizontal parabola is equal to
[tex](y-k)^{2}=4p(x-h)[/tex]
where
Vertex ----> (h,k)
Focus ----> F(h+p,k)
directrix -----> x=h-p
we have
Focus F(3,0)
so
h+p=3 ------> equation A
k=0
directrix x=-3
so
h-p=-3 ------> equation B
Adds equation A and equation B and solve for h
h+p=3
h-p=-3
------------
2h=0 -----> h=0
Find the value of p
h+p=3 ------> 0+p=3 ------> p=3
substitute in the equation
[tex](y-0)^{2}=4(3)(x-0)[/tex]
[tex](y)^{2}=12(x-0)[/tex]
Convert to standard form
isolate the variable x
[tex]x=\frac{1}{12}y^{2}[/tex]