Answer:
angle of inclination to the horizontal is 9.95°
Step-by-step explanation:
Let the angle of inclination be θ
We know acceleration , a = 1.21 m/[tex]s^{2}[/tex]
Now using effective mass concept, we get
[tex]a = \frac{m.g.sin\theta }{\frac{m+l}{r^{2}}}[/tex]
[tex]a = \frac{m.g.sin\theta }{\frac{m+0.4.m.r^{2}}{r^{2}}}[/tex]
[tex]a = \frac{m.g.sin\theta.r^{2} }{m(1+0.4r^{2})}[/tex]
[tex]a = \frac{m.g.sin\theta }{1.4m}[/tex]
[tex]1.21= \frac{9.81sin\theta }{1.4}[/tex]
Therefore, solving for θ, we get
θ = 9.95°
Therefore, angle of inclination to the horizontal is 9.95°