Respuesta :

togle

Answer:

pi/4 and 7pi/4

Step-by-step explanation:

attached

you're welcome :>

Ver imagen togle

Answer:

Option 2 - [tex]x=\frac{\pi}{4},\frac{7\pi}{4}[/tex]  

Step-by-step explanation:

Given : Expression [tex]\sqrt{2}\cos x-1=0[/tex] for [tex]0\leq x\leq 2\pi[/tex]              

To find : What are all the exact solutions of expression?

Solution :  

First we simplify the expression,

[tex]\sqrt{2}\cos x-1=0[/tex]

[tex]\sqrt{2}\cos x=1[/tex]            

[tex]\cos x=\frac{1}{\sqrt{2}}[/tex]      

The general solution is            

[tex]x=\frac{\pi}{4}+2\pi n,\frac{7\pi}{4}+2\pi n[/tex]          

For [tex]0\leq x\leq 2\pi[/tex]                  

The solution is  [tex]x=\frac{\pi}{4},\frac{7\pi}{4}[/tex]  

Therefore, Option 2 is correct.