An electric field of 100 V/m is directed outward from the plane of a circular area with radius 4.0 cm. If the electric field increases at a rate of 10 V/ms, determine the magnitude of the magnetic field at a radial distance 10.0 cm away from the center of the circular area. 1.1 × 10-15 T 3.4 × 10-15 T 5.9 × 10-15 T 8.9 × 10-15 T 9.7 × 10-15 T

Respuesta :

Answer:

The magnitude of the magnetic field is [tex]8.9\times10^{-19}\ T[/tex]

Explanation:

Given that,

Electric field = 100 V/m

Radius = 4.0 cm

Electric field increase at a rate = 10 V/ms

Radial distance = 10.0 cm

We need to calculate the magnetic field

Using Gauss's law

[tex]\oint{\vec{E}\cdot\vec{dA}}=\phi_{E}[/tex]

[tex]\dfrac{dE}{dt}A=\dfrac{d\phi_{E}}{dt}[/tex]

[tex]\dfrac{dE}{dt}(\pi r^2)=\dfrac{d\phi_{E}}{dt}[/tex]

We need to calculate the [tex]\dfrac{d\phi}{dt}[/tex]

[tex]\dfrac{d\phi}{dt}=10\times\pi\times(4.0\times10^{-2})^2[/tex]

[tex]\dfrac{d\phi}{dt}=0.0503\ Nm^2/C.s[/tex]

According to Ampere Maxwell law

[tex]\oint{\vec{B}\cdot \vec{ds}}=\mu_{0}(I+\epsilon_{0}\dfrac{d\phi_{E}}{dt})[/tex]

[tex]\oint{\vec{B}\cdot\vec{ds}}=\mu_{0}I+\mu_{0}\epsilon_{0}\dfrac{d\phi_{E}}{dt})[/tex]

Electric field is zero inside the circle.

[tex]\oint{\vec{B}\cdot \vec{ds}}=\mu_{0}\epsilon_{0}\dfrac{d\phi_{E}}{dt})[/tex]

[tex]B(2\pi\times10.0\times10^{-2})=4\pi\times10^{-7}\times8.85\times10^{-12}\times0.0503[/tex]

[tex]B=\dfrac{4\pi\times10^{-7}\times8.85\times10^{-12}\times0.0503}{2\pi\times10.0\times10^{-2}}[/tex]

[tex]B=8.9\times10^{-19}\ T[/tex]

Hence, The magnitude of the magnetic field is [tex]8.9\times10^{-19}\ T[/tex]