Respuesta :
Answer : The temperature of the chloroform will be, [tex]101.67^oF[/tex]
Explanation :
First we have to calculate the mass of chloroform.
[tex]\text{Mass of chloroform}=\text{Density of chloroform}\times \text{Volume of chloroform}=1.4832g/ml\times 74.81ml=110.958g[/tex]
conversion used : [tex](1cm^3=1ml)[/tex]
Now we have to calculate the temperature of the chloroform.
Formula used :
[tex]q=m\times c\times (T_{final}-T_{initial})[/tex]
where,
q = amount of heat or energy = 1.46 kJ = 1460 J (1 kJ = 1000 J)
[tex]c[/tex] = specific heat capacity = [tex]0.96J/g.K[/tex]
m = mass of substance = 110.958 g
[tex]T_{final}[/tex] = final temperature = ?
[tex]T_{initial}[/tex] = initial temperature = [tex]25^oC=273+25=298K[/tex]
Now put all the given values in the above formula, we get:
[tex]1460J=110.958g\times 0.96J/g.K\times (T_{final}-298)K[/tex]
[tex]T_{final}=311.706K[/tex]
Now we have to convert the temperature from Kelvin to Fahrenheit.
The conversion used for the temperature from Kelvin to Fahrenheit is:
[tex]^oC=\frac{5}{9}\times (^oF-32)[/tex]
As we know that, [tex]K=^oC+273[/tex] or, [tex]K-273=^oC[/tex]
[tex]K-273=\frac{5}{9}\times (^oF-32)[/tex]
[tex]K=\frac{5}{9}\times (^oF-32)+273[/tex] ...........(1)
Now put the value of temperature of Kelvin in (1), we get:
[tex]311.706K=\frac{5}{9}\times (^oF-32)+273[/tex]
[tex]T_{final}=101.67^oF[/tex]
Therefore, the temperature of the chloroform will be, [tex]101.67^oF[/tex]